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Motivation:
4 ] ] A
Science Paradigms

* Thousand years ago:

science was empirical
describing natural phenomena

+ Last few hundred years:
theoretical branch [

using models, generalizations

» Last few decades:

a computational branch
simulating complex phenomena

» Today: data exploration (eScience)
unify theory, experiment, and simulation

— Data captured by instruments
or generated by simulator

— Processed by software
— Information/knowledge stored in computer

— Scientist analyzes database/files
using data management and statistics

- Gray (2007)
IPCC WG1 ARS just released...but what about MT?




Global Energy Balance (W m-3)
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-Ultimately following Kiehl and Trenberth (1997) BAMS 78:197-208.



Changes to atmospheric transmissivity in the
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Global Change vs. Global Warming

5.0x10%° J = world energy consumption in 2010

From Church et al. 2011



What does it all mean for water resources in MT?

Exploring the Sheffield et al. (2006) meteorological forcing dataset
Daily global 0.5° data product

Designed for hydrology:
-Precipitation

-Air temperature
-Specific Humidity

-Air Pressure

-Wind speed | |
-Incident shortwave radiation " . E—(mm/day) |
-Downwelling longwave radiation R

. o™

Combination of observational and reanalysis data products
Bias correction for precipitation gage undercatch



Defining areas belonging to MT from
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MT versus global temperature trends
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MT versus global precipitation trends
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Sheffield et al. (2012) Little change in global drought over the past 60 years.
Nature doi:10.1038/nature11575



MT versus global incident shortwave trends
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‘Global Brightening’ (Wild et al. 2006)

following dimming in polluted areas
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MT versus global incident radiation trends
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Increases in aridity

Not Changing
Aridity index = Precipitation / Potential Evapotranspiration

Increasing as a function of incident radiation

Conclusion:
When making water use decisions we must recognize that
there is now more energy to move water to the atmosphere.

Trends in MT are not as acute as the global mean, but MT has
less available water than the global mean.



Sheffield et al.
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MT versus global specific humidity trends
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The zero-dimensional climate model
(Global change is simple, regional
change is difficult)

Energy in Energy out

At steady state



Energy in = solar energy

A disk of solar radiation of size mr? hits Earth
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Energy out = planetary emittance

Stefan-Boltzmann Law A = 475}/‘2
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Planetary energy balance

Energy in = Energy out

Ein = Eout

7S (1 - p) = 4@ eoT*



Solving for T

SC (1 — ,O) Constants

T =
— _ 8 | -4 mn-2 -1
48()' 0o=5.67x10"°JK“*m=—=s

Somewhat Constants
S.=1367 W m~
T 4\/ S.(1-p) p=0.31

deo




The temperature of blackbody Earth

- 1367Jm s (1-0.31)

— g 4 5 ] =254K —_ _19OC
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The temperature of real Earth ~ 14°C

Why? The effective emissivity of Earth is less than 1.
This is the greenhouse effect



Solving for (effective) emissivity

Recall:

Using T =14 °C

Percent

Kirchoff’s Law of Radiation
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Albedo, emissivity and the solar constant determine
global temperature

Why?
They determine
the energy balance.
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